
Fermi National Accelerator Laboratory 

FERMILAB-Conf-94/253 

Emittance Growth Due to Negative-Mass 
Instability Above Transition 

King-Yuen Ng 

Fermi National Accelerator Laboratory 
P.O. Box 500, Batavia, Illinois 60510 

August 1994 

Proceedings of the Workshop on Beam Instabilities in Storage Rings, Hefei, China, July 25-30, 1994. 

e Operated by Universities Research Association Inc. under Contract No. DE-AC02-76CH03000 with the United States Department of Energy 



Disclaimer 

This report was prepared as an accoud of work sponsored by an agency of the United States 
Government. Neither the United States Goverrmerlt nor any agency thereof, nor any of 
their employees, makes any warranty, express or implied, or assumes any legal liability 
or responsibility for the accuracy, completeness, or usefulness of any information, 
apparatus, product, or process disclosed, or represents that its use would not infringe 
privately owned rights. Reference herein to any specific commercial product, process, or 
service by trade name, trademark, nlanufhcturer, or otherwise, does not necessarily 
constitute or imply its endorsement, recommendation, or favoring by the United States 
Government or any agency thereof The views and opinions of authors expressed herein 
do not necessarily state or reflect those of the United States Government or any agency 
thereof. 



EMITTANCE GROWTH DUE TO NEGATIVE-MASS 
INSTABILITY ABOVE TRANSITION 

King-Yuen Ng 

Fermi National Accelerator Laboratory,* P.O. Box 500, Batavia, IL 60510, U.S.A. 

Abstract 

Due to space-charge effect, there is a growth of bunch emittance across transition 
as a result of negative-mass instability. The models of growth at cutoff frequency 
and growth from high-frequency Schottky noise are reviewed. The difficulties of 
performing reliable simulations are discussed. An intuitive self-bunching model for 
estimating emittance growth is presented. 

I. INTRODUCTION 

As seen by the bunch particles, the space-charge force effectively switches sign while 
crossing transition. This leads to the mismatch of bunch length across transition and 
negative-mass instability after transition. Bunch-length mismatch results in the tum- 
bling of the bunch in the longitudinal phase space and eventual emittance growth due 
to filamentation. Negative-mass instability is a type of microwave instability, which 
will also result in emittance growth and even possible breakup of the bunch. Although 
the effect of bunch-length mismatch can be cured by a quadrupole damper, [l] which 
eliminates the tumbling, the effect of negative-mass instability cannot be avoided except 
by a 7t jump. In the Fermilab Main Ring or the future Main Injector, if the bunch 95% 
emittance grows to larger than 0.15 eV-set, the efficiency of bunch coalescence will be 
affected with significant loss of particles. This article reviews the various treatments 
of emittance growth during negative-mass instability, and presents a simple intuitive 
self-bunching model to obtain an estimate. 

II. GROWTH AT CUTOFF 

In the absence of space charge or other coupling impedances, the motion of a par- 
ticle in the longitudinal phase space can be derived analytically [2] at any time near 
transition in terms of Bessel function Jz and Neumann function N2. With the introduc- 
tion of space charge, the growth rate if a small excitation amplitide can be evaluated 
analytically by integrating the Vlasov equation when the bunch has either an ellipti- 
cal or bi-Gaussian distribution in the longitudinal phase space. The total growth can 
then be tallied up by small time steps across transition. Lee and Wang [3] made such 
a calculation for the Relativistic Heavy Ion Collider to be built at Brookhaven. The 
emittance growth was taken as two times the growth of the excitation amplitude at the 
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cutoff frequency, and the result was considered satisfactory. The choice of the cutoff fre- 
quency comes from the assumption that electromagnetic waves emitted by the bunch at 
higher frequencies will not bounce back from the beam pipe to interact with the bunch. 
Wei [4] later studied the emittance growth of the Alternating-Gradient Synchrotron at 
Brookhaven using similar approach. His simulation showed that the emittance blowup 
had been very much overestimated. Wei pointed out that the bunch emittance had been 
kept constant by Lee and Wang in the computation of the growth for each time step. 
The bunch emittance was in fact growing and would provide more Landau damping to 
counteract the instability. With the emittance update at each time step, he found the 
numerical calculations agree with the simulations. 

In order to discuss the shortcomings of the Lee-Wang-Wei method, let us first review 
some theory of the negative-mass instability. If we ignore Landau damping, the growth 
rate at peak current IP at the revolution harmonic ICC is given by 

G(k,,t) = w. (;$$;>“’ , 

where oe/2n is the revolution frequency, Eo the particle rest energy, 77 the frequency-slip 
parameter, e the particle charge, t the time measured from the moment of transition 
crossing, and 21 the imaginary part of the space-charge impedance, which is given by 

zr 20s 
K = 2py2 * (2.2) 

Here, 20 z 377 ohms is the free-space impedance, y and /? the relativistic parameters 
of the bunch particle at or near transition, and g the space-charge geometric parameter, 
which at zero frequency can be expressed in terms of the beam pipe radius 6 and beam 
radius a as 

go= I+21nb 
a’ (2.3) 

and rolls off at high frequencies roughly like 

g = 1 + &kcQ2 
when b/u is not too big, with the half-value harmonic given by 

P-5) 

and R the radius of the accelerator ring. It is clear from Eq. (2.1) that at frequencies 
below the rolloff of the space-charge impedance, the growth rate for negative-mass 
instability is directly proportional to the harmonic k,. When Landau damping is taken 
into account, Hardt [7] showed that the growth rate becomes 

G(W) x b2, (2.6) 
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which provides a maximum at k, = k,+/3:. Taking the Fermilab Main Ring as an 
example, this corresponds to 77.6 GHz when a = 5 mm and 6 = 35 mm. On the other 
hand, the cutoff frequency is only about 1.5 GHz. For a typical cycle, the total growth 
across transition for a power spectral line is 1.5 x lo6 times at the former frequency 
but only 1.6 at the latter frequency. As a result, it is difficult to justify the correctness 
of the description of Lee-Wang-Wei. In addition, in Wei’s simulation, the bunch was 
divided into bins with the bin width equal to the cutoff wavelength. In other words, all 
large-growth-rate amplitudes at high frequencies had been neglected. Here, we want to 
point out that the first simulation across transition to show negative-mass instability 
was done by Lee and Teng [5] on the Fermilab Booster, where they also divided the 
bunch up into cutoff wavelengths only. Later, simular simulations on the same Booster 
were performed by Lucas and MacLachlan, [6] and they also failed to include the high- 
frequency amplitudes. 

One may raise the question that a typical proton bunch which is usually much longer 
than the radius of the beam pipe will have a spectrum not much higher than the cutoff 
frequency. In order to have a growth at harmonic k, = k, or kc+, the original amplitude 
or the seed of the growth has to be supplied by Schottky noise, which is extremely small, 
so that the growth effect to the bunch at such high frequencies may not be significant. 
This question will be discussed in Sec. IV below, after we go over the Schottky-noise 
model of Hardt. [7] 

III. SCHOTTKY-NOISE MODEL 

Hardt assumed that the seeds of the negative-mass growth are given by the statistical 
fluctuations of the finite number of particles Nb within the bunch. The bunch is divided 
into it4 bins in the rf phase coordinate 4. According to the smooth distribution F(4) 
which is normalized to have an average of unity, there are N#(+)A4/2$ particles, 
where A+ = 2$/h! is the bin width and 4 is the half length of the bunch. Due to 
statistical fluctuation, the m th bin contains SN, extra particles. So a step function 
,f(b) can be defined: 

f(O) = s 
m-l < 4+4 

if- - 
M 2d 

<$ 

where AN = Nb/M is the average number of particles in a bin. Expanding in a Fourier 
series 

f(q$, t) = 2 ckb(t)e”2”kbdi(2i) , 
kb=-m 

(3.2) 

it can easily be shown that the initial expectation is 

E(h,(“)~2) = i Y (3.3) 
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independent of mode number kb and the number of bins M. The growth rate of each 
mode amplitude Ckb can be derived from the Vlasov equation, and the evolution is 

bkb@>t = -&=P u’G(k,W, 
J 

where the growth rate has been given in Eq. (2.6). Here, the bunch mode number kb 

should not be confused with the revolution harmonic number k,. They are related to 
each other by 

kb 24 
c=2nh7 (3.5) 

where h is the rf harmonic. Note that the growth rate G(k,,t) is odd in k, or kb, so 

that half the bunch modes grow and half of them are damped. In other words, we need 
to take care of modes with one sign of kb only. 

Hardt made the assertion that there is no blowup if 

c kk(to)12 < 1 , (3.6) 
k 

where to is the time when stability is regained. From this, a threshold for blowup can 
be formulated. For example, a critical parameter c can be defined by [8] 

/k, ( %)2 ( hl,3:;:7f,3) ( *‘f;;;;;f3) = cEc 9 
0 

where E, is the maximum allowable time integrated growth, and is given by 

EC= i [InNb-ln (3yE)] . 

(3.7) 

(3.8) 

When the critical parameter c < 1, there is no bIowup. In above, the coefficient [ = 
2-41/6325&r21’(2/3)(1 -n/4), A is the area or emittance of an elliptical bunch in eV-set, 
rP is the classical proton radius, C$~ is the synchronized rf phase, yt is y at transition, it 
is the rate at which transition is crossed, and kbl is the half-value bunch mode number, 

which is related to the half-value revolution har’monic by kbf = k,:$/rh. 

Some comments are in order: 
(1) The critical condition C ]c&o)12 = 1 implies that 

$ J If(A to)12~$ = 1 
or the average fluctuation in each bin is comparable to the average number of particles in 
each bin, which is really a large particle fluctuation or a big blowup in the bunch. This 
blowup implies violent changes in the bunch, such as total bunch breakup. However, the 
assertion of Eq. (3.5) is a bit hand-waving, because even when the average fluctuation is 

4 



much less than unity, there can be a big blowup of the bunch emittance already. Hardt’s 
paper provides no recipe to compute the increase in bunch emittance in this regime. 

(2) The perturbation expansion is in fact 

F($b) + f(4, t) = F(4) + 5 Ckb(t)ei2”kb4’(2’) , (3.10) 
kb=-03 

where the unperturbed distribution has an average of unity. Since Hardt only studied 
the situation of no blowup or when the fluctuation function f(+,t) has an average of 
less than unity, the perturbation is justified although the amount of growth of the Ckb’S 

is tremendous. 

IV. COMPARISON OF GROWTHS AT CUTOFF AND HIGH 

FREQUENCIES 

For a parabolic bunch, the unperturbed linear distribution is 

42 F(4) =; l- 2 * 
( ) 

When it is expanded in a Fourier series 

F(4) = 2 akb(0)e”2”kbb’(2’) , 
kb=--03 

the mode amplitude is 
3 (-l)“b+’ 

akb(o) = 2 k; * 

(4.1) 

(4.2) 

(4.3) 

The bunch mode number kb which corresponds to the cutoff harmonic k, = R/b can 
be estimated using Eq. (3.5). Th en, the final value of a power spectral line can be 
computed: 

)ak,(tO)12 = lakb(0)l exp 1’” 2G(kc, Wt. (4.4) 

The results are listed in Table I for various run cycles of the Fermilab Main Ring. The 
beam pipe radius and the beam radius are kept fixed at b = 35 mm and a = 5 mm, 
respectively. The synchronous phase is 60”. Alongside, we have also tabulated the final 
size of the Schottky power spectral line at the high harmonic k,, according to Eq. (3.4). 
The sum of all the Schottky power spectral modes was derived by Hardt to be 

c ICk&)12 = jck&d121k =k 
c 

ka 
CP 

(4.5) 

where 

J to 
Ep = G(k,, W 

0 
W) 
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3t 
set-’ 

90 

90 

90 

90 

90 

120 
120 
120 
120 
120 

Initial Bunch Emittance 
eV-set 

0.05 
0.06 
0.07 
0.08 
0.09 
0.06 
0.07 
0.08 
0.09 
0.10 

F 
2.2 
2.2 
2.2 
2.2 
2.2 
4.0 
4.0 
4.0 
4.0 
4.0 

at kcutoR 
3.70 
2.21 
1.67 
1.41 
1.26 
7.44 
3.80 
2.54 
1.95 
1.64 

at kc, 
1.50 x log 
1.08 x lo2 

1.19 x 1o-2 
4.86 x 1O-5 

1.41 x 1o-6 

4.37 x lo’* 
1.94 x log 
4.40 x lo3 
1.02 x loo 

3.57 x 1O-3 

sum 
4.03 x 1o’O 
3.97 x lo3 

5.74 x 10-l 
2.93 x 1o-3 
1.06 x 1O-4 
1.00 x 1020 
5.83 x lOlo 
1.67 x lo5 
4.76 x 10’ 

L2.00 x 10-l 

Table I: Final fluctuation power spectra at cutoff and high-frequency Schottky harmonics 

Final Power Spectrum of Fluctuation 1 

is the integrated growth at the peak harmonic k,,. This is also listed 
of the table. 

n the last column 

We can see that the Hardt’s blowup criterion of Eq. (3.6) appears to be critical, 
where the growth changes tremendously. When that criterion is exceeded, the Schottky 
modes are always larger than the mode at cutoff, showing that the inclusion up to cutoff 
frequency is inadequate. On the other hand, below the blowup limit, the mode at cutoff 
is larger than the high-frequency Schottky modes, implying that there should be modest 
emittance growth below the Hardt’s blowup limit. However, this does not tell us how 
large the emittance growth is. It will be best if we can sum up the final power spectrum 
of the bunch distribution: 

C lakb(to)12 = C &ein%rated growtl~. 

k kb b 
(4.7) 

Unfortunately, this sum is divergent because the integrated growth is directly propor- 
tional to kb. Even when we take into account the space-charge rolloff, the sum still 
becomes unreasonably large. The reason behind this is the breakdown of the linear per- 
turbation when the perturbed spectral mode becomes larger than the unperturbed one. 
As a result, it remains unclear whether the high-harmonic Schottky noise is dominating 
in the growth of the bunch emittance. A simulation seems to be the best solution. 

V. DIFFICULTIES IN SIMULATION 

A simulation of the negative-mass instability is not trivial. There are two main 
difficulties: 

(1) Inclusion of high-frequency components 

The growth of the Schottky noise peaks at kcp, which corresponds to roughly 78 GHz 
for the Fermilab Main Ring, while the half-value space-charge roIloff harmonic kcf 
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corresponds to 134 GHz. Therefore, in simulations we need a bin size of about l/134 
or 0.0075 ns. The tracking code ESME [9] developed at Fermilab divides the whole rf 
wavelength or 18.8 ns up into 2n bins where n is an integer, and the number of bins 
will have to be at least 4096 which is too large. As a rule of thumb, the bins should 
have a width less than a/y, where a is the beam radius. Simulations of the Main Ring 
across transition had been performed using ESME. As we increase the bin number from 
128 to 256 and 512, we do see self-bunching in the phase plot corresponding to the 
highest frequency of 3.40, 6.81, and 13.6 GHz, respectively, in each of the situations, as 
illustrated in Fig. 1. This suggests that the negative-mass growths at the high Schottky 
frequencies do play a role across transition. [lo] In an actual simulation, the space-charge 
force is usually implemented by a differentiation of the bunch profile. To maintain the 
same numerical accuracy, we need to follow the “three-in-one rule,” [ll] which states 
that whenever the bin width is reduced by a factor of 2, the number of macro-particles 
needs to be increased by a factor of 2 3. As a result, the tracking time will increase by 
a factor of 24. 

However, a typical Main Ring bunch has a full length of only 1 ns at transition. If 
we divide just two or three times the bunch region into bins, there will be only 256 or 
512 bins, which will reduce the tracking time drastically. S$renssen [12] had successfully 
performed simulation with a bin width of a/y. But he did not overcome the second 
difficulty that we are going to discuss next. 

(2) The right amount of Schottky noise 

In a simulation of microwave instability, there is usually ample time for the instability 
to develop to saturation. Therefore, we do not care so much about the size of the initial 
excitation or seed of the growth. Across transition, however, the bunch is negative-mass 
unstable only for a short time until the frequency-flip parameter q becomes large enough 
to provide enough Landau damping, and this time is typically of the order of the non- 
adiabatic time, which is about 3 ms for the Fermilab Main Ring. Therefore, the initial 
excitation amplitude needs to be tailored exactly. To have the exact Schottky noise 
level, we need to use in the simulation micro-particles instead of macro-particles. The 
Fermilab Main Ring bunch has typically Nb = 2.2 x 10” particles, which is certainly 
unrealistically too many in a simulation. 

A suggestion is to populate the bunc.11 by NM macro-particles according to a Ham- 
mersley sequence [13] instead of randomly. Then, the number of particles in each bin 
in excess of the smooth distribution will be O(l) initially, or the fluctuation function 
defined in Eq. (3.1) starts from f(+,O) = J’(b)/AN = MF(4)/Nb. The expectation of 
the initial bunch mode amplitude turns out to be 

M 
Jmkb(O>12> = - N2 ’ A4 

(5.1) 

where M is the number of bins. Comparing with Eq. (3.3) for a randomly distributed 
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bunch, the required number of macro-particles becomes 

NM = (MNa): , (5.2) 

which is more reasonable (- 2.4 to 3.6 x 106), but may be still too large to be managed 
in a simulation. 

There are, however, two other difficulties with the Hammersley-sequence method. 
The step function f(4,t) defined in Eq. (3.1) has an initial expectation of 

wb#, O)l = y, 
b 

(5.3) 

for the m th bin at 4m, which is proportional to the initial unperturbed bunch distri- 
bution F(4). N ow it changes to E[f(4,0)] = $$ which is independent of F(4). Thus, 
the relative fluctuations in the bins cannot be made to resemble those in the randomly 
populated bunch, and the initial fluctuation spectrum would have been altered. 

In order to have the bunch to fit the space-charge modified rf bucket before transition, 
we usually switch on the space-charge force adiabatically over many synchrotron periods 
so that the initial populated bunch emittance will be preserved. For bunch particles 
distributed with a Hammersley sequence, the favored Hammersley statistics can often 
be lost after several synchrotron oscillations. A test was performed with 2 x lo5 particles 
in a truncated bi-Gaussian distribution. The bunch was projected onto one coordinate, 
where it was divided into 20 equal bins. To simulate synchrotron oscillation, the bunch 
was then rotated in phase space with an angular velocity which decreases linearly by 
1% from the center to the edge of the bunch. The fluctuation or number of particles in 
excess of the smooth projected Gaussian distribution in each bin was recorded for every 
rotation, and the rms was computed. The results are plotted in Fig. 2 as a function 
of rotation number. We see that although the rms fluctuation starts from 7 initially, it 
increases rapidly to IV 12 after 5 rotations, N 20 after 20 rotations, and will approach its 
statistical value of 100 eventually. This might have been an overestimation, because the 
actual decrease in synchrotron frequency is not linear and the decrease near the core of 
the bunch where most particles reside is very much slower. Nevertheless, this test gives 
us an illustration of restoration to randomness. To cope with the fast restoration to 
randomness, one possibility is to compute exactly the initial distribution of the bunch in 
the space-charge modified rf bucket right at transition and populate the bunch according 
to a Hammersley sequence. In this way, the tracking of the bunch particles across the 
negative-mass unstable period, which is usually of the order of one synchrotron period, 
may reveal the reliable growth from the correct Schottky noise level. 

VI. SELF-BUNCHING MODEL 

Microwave instability can be viewed as self-bunching. The beam current IP, seeing 
the impedance 21, gives rise to an rf voltage I,Zz, and creates a self-bunching rf bucket 
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with an energy half height 

y = (2n$9z;Eo)i, (6-l) 

where Ic,, denotes the revolution harmonic of the impedance. If this bucket height is 
less than the energy spread of the bunch, there will not be any extra energy spread 
and the bunch will be stable. If the bucket height is larger than the energy spread of 
the bunch, the bunch particles will travel outside the original energy boundary of the 
bunch, giving rise to an emittance growth as a result of filamentation. In fact, this is 
just another way of expressing the Keil-Schnell criterion. [14] 

Here, we want to make the conjecture that this self-bunching bucket height deter- 
mines the final energy spread of the bunch. Inside this bucket, the angular synchrotron 
frequency is given by 

w, = ($,,;$yuo. (6.2) 

Since the frequency-flip parameter 77 is changing rapidly at transition, we substitute 

(6.3) 

Integrating Eq. (6.2), we obtain the time to reach a quarter of a synchrotron oscillation 
from the moment of transition crossing as 

(6.4) 

This will be the time required for some particles to reach the top of the bucket. Of 
course, the height of the self-bunching bucket is also changing, and the value of qy at 
this moment should be substituted in Eq. (6.1). At this moment, the unperturbed energy 
spread of an elliptical bunch with emittance A and without space-charge distortion is [15] 

where 

AE 
- = 2’,%~1,6~ ($$)‘(1- 31/6&J;) ’ 

W/3) 
E 

T,= (p2$~;;‘s’)i . 

(6.5) 

(6-6) 

is the non-adiabatic time. The correction in the second term of Eq. (6.5) is usually small. 
Thus, the growth in energy spread can be computed easily, and assuming filamentation 
the growth in emittance can be obtained. This estimate will be valid if T is less than 
the time to regain stability. The growths for some situations of the Fermilab Main Ring 



+t Nb Initial Bunch Emittance Fractional Emittance Growth 
set-l 1O1O eV- set Self-Bunching Model Cutoff Model 

90 2.2 0.05 4.09 4.06 
90 2.2 0.06 3.03 2.43 
90 2.2 0.07 2.35 1.83 
90 2.2 0.08 1.89 1.54 
90 2.2 0.09 1.52 1.38 
120 4.0 0.06 5.32 8.16 
120 4.0 0.07 4.12 4.17 
120 4.0 0.08 3.31 2.78 
120 4.0 0.09 2.72 2.14 
120 4.0 0.10 2.29 1.80 

Table II: Growth of emittance for the self-bunching and growth-at-cutoff models. 

are given in Table II. The corresponding growths obtained from the growth-at-cutoff 
model are also listed for comparison. 

There is at present no reliable simulation of emittance growth. Experimental mea- 
surements are also marred with other mechanisms, such as bunch tumbling due to 
bunch-length mismatch, particles with different momentum crossing transition at differ- 
ent time, etc. Another example at the Fermilab Main Ring is that the bunch emittance 
usually grows to such a value that scraping occurs. Therefore, it is hard to judge at 
this moment the reliability of this crude model. On the other hand, this model can 
certainly be improved to a certain degree by including, for example, the space-charge 
distortion of the bunch shape, the tilt effect in phase space near transition, as well as 
the mechanism of overshoot when stability is regained. 

VII. CONCLUSION 

The negative-mass instability across transition was discussed. We reviewed the 
growth-at-cutoff model for emittance increase as well as Hardt’s model of emittance 
blowup from high-frequency Schottky noise. We concluded that these two models fail 
to provide us with the correct emittance growth. The difficulties of performing a reliable 
simulation across transition were outlined. Finally, a self-bunching model for estimating 
emittance growth was presented. At this moment, no reliable simulation results and 
experimental results are available for comparison. 

There remain some problems which require further investigation. The expression 
of the space-charge impedance given in Eq. (2.4) h as been derived by assuming the 
fact that the phase velocity is equal to the particle velocity. This assumption may 
not hold at extremely high frequencies, and its breakdown may affect the behavior of 
the space-charge impedance at high frequencies. The Keil-Schnell criterion for a bunch 

10 



beam which provides the threshold for microwave instability may not be valid near 
transition crossing. This is possible because synchrotron oscillation is extremely slow 
there. This may affect the basis of the crude self-bunching estimate. These problems 
will be examined in a separate paper. 
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Figure 1: ESME simulations of a Fermilab Main Ring bunch containing 4 x 10” particles 
with initial emittance of 0.1 eV-set just after transition with (a) 256 bins and (b) 512 
bins in an rf wavelengths; 20,000 and 160,000 macro-particles have been used in the two 
cases. Excitations of 6.81 and 13.6 GHz corresponding to the respective bin widths are 
clearly seen in the two plots. 
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